Apolipoprotein E knockout mice as a new model of hypercholesterolemia and atherosclerosis-associated erectile dysfunction

Behr-Roussel D.1, Darblade B.1, Oudot A.1, Compagnie S.1, Bernabé J.1, Alexandre L.1, Giuliano F.1,2

1 Pelvipharm, Domaine CNRS, 1 avenue de la terrasse, Bâtiment 5, F-91190 Gil-sur-Yvette, France
2 AP-HP Raymond Poincaré hospital, Department of Neurological rehabilitation, 104 Bd R. Poincaré, F-92380 Garches, France - giuliano@cyber-sante.org

OBJECTIVES

- Erectile dysfunction (ED) and cardiovascular diseases share the same risk factors including hypercholesterolemia and atherosclerosis, but there are few available animal models allowing to study hypercholesterolemia-associated ED.
- Although the use of hypercholesterolemic rabbit models has proven to be useful to illustrate the link between ED and hypercholesterolemia, the cost of daily maintenance of the animals and necessity for important amounts of drug in view of proof of concept studies to prevent or slow down these disorders have limited their use.

RESULTS

We aimed to develop a new model of atherosclerosis-associated ED in a well-known experimental model of atherosclerosis, the ApoE KO mice.

MATERIALS & METHODS

Experimental animals

26, 32, and 38 weeks-old ApoE KO mice fed a western-type diet from 4 weeks of age (n=9, 13, and 11 respectively) and age-matched C57BL6/J mice (n=9, 14, and 18 respectively).

In vivo evaluation of erectile function

Simultaneous computerized measures of mean arterial blood pressure (MAP) and intracavernous pressure (ICP) following electrical stimulation of the cavernous nerve in vivo (square-wave pulses 6 V, 0.3ms pulse duration for 30 s, 0 to 15 Hz frequency) - expressed as ∆ICP/MAP (%).

Quantification of atherosclerotic lesions

Atherosclerotic lesions were evaluated by planimetry in Oil Red O stained aortas.

CONCLUSIONS

- The present study provides the first evidence that, using electrical stimulation of the cavernous nerve at increasing frequencies, anaesthetized ApoE KO mice fed a Western-type diet demonstrate significantly impaired penile erection compared to age-matched C57BL6/J mice.
- We propose that the ApoE KO mouse could therefore constitute a relevant model for the study of hypercholesterolemia and atherosclerosis-associated ED, and provides an attractive tool to investigate the disease-modifying effects of new therapeutic agents targeting these disorders.

This study represents experimental support to investigate common therapeutic strategies targeting both the progression of systemic consequences of atherosclerosis and ED in both the systemic vascular system and the penis as a target end-organ.

Study supported by a grant from Bayer/GSK