# Immunochemical characterisation of the rodent brain neurons involved in the efferent control of the clitoris and the vagina

Hélène Gelez<sup>1</sup>, Sarah Poirier<sup>1</sup>, Kelly A. Allers<sup>2</sup>, David Reynolds<sup>2</sup>, Chris Wayman<sup>2</sup>, Jacques Bernabé<sup>1</sup>,

Laurent Alexandre<sup>1</sup> & François Giuliano<sup>1,3</sup>

<sup>1</sup>Pelvipharm Laboratories - Orsay parc – Bâtiment Cèdres - 86, rue de Paris – 91400 Orsay - France <sup>2</sup> Pfizer Global Research and Development - Ramsgate Rd – Sandwich, Kent CT13 9NJ - UK <sup>3</sup>Raymond Poincaré Hospital Neuro-Uro-Andrology, Department of Physical Medicine and Rehabilitation, AP-HP, 92380 Garches, University of Versailles Saint Quentin, UFR Paris Ile de France Ouest France

This study was supported by an unrestricted grant of Pfizer Global Research and Development.

## **Background**

- > the clitoris and vagina are the main peripheral sexual organs involved in female sexual response
- > spinal and supraspinal centers controlling the clitoris and vagina have been identified in retrograde tracing studies conducted in female rats (Marson & Murphy, 2006; Marson, 1995):
  - Spinal: lumbosacral segments (L6-S1)
  - Brain centers widely distributed
- neurochemical phenotype of the neurons belonging to these descending pathways remain unknown

## **Background**

- ➤ The female sexual response is controlled by numerous hormonal and neurochemical systems
- > Critical role of the melanocortin-4 receptors (MC4-R) and oxytocin (OT)
- ➤ Bremelanotide (MC3- and MC4-R agonist) selectively increases sexual appetitive behaviors in female rats (*Pfaus et al., 2007,2004*) and positively affects sexual desire and genital arousal in pre- and postmenopausal women (*Safarinejad, 2008; Diamond et al., 2006*)
- ➤ pharmacological manipulation of OT at the central level modify both receptive and proceptive components of female sexual behavior (Witt and Insel, 1991; Caldwell et al., 1994).

## **Objective**

#### Aim:

To examine if brain neurons involved in the efferent control of the rodent clitoris and vagina possess melanocortin-4 receptors (MC4-R) and/or contain oxytocin (OT).

### **General procedure:**

Double and triple immunocytochemical labeling against pseudorabies virus (PRV) injected in the clitoris and vagina, MC4-R and OT in brain sections from estrous females

#### **Materials and methods**

Day 0: estrus



PRV injection into the clitoris and vagina



Day 5

- deep anaesthesia
- perfusion
- brain collecting
- post-fixation
- cryoprotection
- slicing (30µm)



### **Antibodies against:**

- PRV
- MC4-R
- OT



- Double labelling :
- PRV/MC4-R and PRV/OT
   Triple labelling:

PRV/MC4-R/OT



Confocal laser scanning analysis

# Results: double labelling PRV/MC4-R in the PVN – confocal analysis



# Results: double labelling PRV/OT in the PVN – confocal analysis



# Results: triple labelling PRV/MC4-R/OT in the PVN



# **Results: double labelling**

| Brain areas               | PRV       | OT            | PRV/OT       | %PRV/OT         |
|---------------------------|-----------|---------------|--------------|-----------------|
| Medial preoptic area      | 9,7 ±3,3  | $6,8\pm 2,0$  | $0,2\pm 0,1$ | 1,7 ±1,2        |
| Paraventricular nucleus   | 15,5 ±4,1 | 40,6 ±3,6     | 1,3 ±0,4     | <b>8,4</b> ±1,9 |
| Supraoptic nucleus        | 0,0       | 30,1 ±6,5     | 0,0          | 0,0             |
| Lateral hypothalamus      | 6,5 ±2,1  | 10,8 ±1,4     | $0,2\pm0,2$  | 3,8 ±3,4        |
| Lateral hypothalamic area | 1,8 ±1,8  | $7,3 \pm 6,8$ | 0,0          | 0,0             |

| Brain areas                     | PRV           | MC4-R         | PRV/MC4-R      | % PRV/MC4-R       |  |  |
|---------------------------------|---------------|---------------|----------------|-------------------|--|--|
| LIMBIC SYSTEM                   |               |               |                |                   |  |  |
| Bed nucleus of stria terminalis | $1,5 \pm 0,9$ | $3,2 \pm 0,6$ | $0, 8 \pm 0,7$ | <b>14,7</b> ±11,4 |  |  |
| Lateral septum                  | 1,9 ±0,5      | 1,3 ±0,2      | $0.7 \pm 0.4$  | <b>20,5</b> ±11,9 |  |  |
| HYPOTHALAMUS                    |               |               |                |                   |  |  |
| Medial preoptic area            | 8,2 ±3,4      | $9,2 \pm 3,5$ | $1,0\pm0,3$    | 14,5 ±2,3         |  |  |
| Paraventricular nucleus         | 10,7 ±2,8     | 22,5 ±4,7     | $2,9 \pm 0,8$  | 23,2 ±4,0         |  |  |
| Supraoptic nucleus              | 0,0           | $32,0\pm 1,5$ | 0,0            | 0,0               |  |  |
| Lateral hypothalamus            | 1,6 ±0,3      | $8,8\pm 2,9$  | $0,3\pm0,1$    | <b>11,6</b> ±3,0  |  |  |
| Ventromedial nucleus            | 0,5           | 0,0           | 0,0            | 0,0               |  |  |
| Arcuate nucleus                 | 13,4 ±6,2     | $9,0\pm0,3$   | $3,2\pm 1,8$   | <b>16,8</b> ±2,1  |  |  |
| MIDBRAIN                        |               |               |                |                   |  |  |
| Periaqueductal gray             | 6,1 ±2,6      | 2,1 ±1,1      | $0,9 \pm 0,7$  | <b>25,6</b> ±8,9  |  |  |
| Red nucleus                     | 27,8 ±5,0     | 24,4 ±4,6     | 9,3 ±1,2       | <b>30,9</b> ±2,5  |  |  |

## **Results: double and triple labelling**



Percentages of PRV-labeled neurons immunoreactive for MC4-R, for OT, and for both MC4-R and OT.

## **Summary**

- The majority of double PRV/MC4-R and PRV/OT was located in the paraventricular nucleus, medial preoptic area, lateral hypothalamus and arcuate nucleus.
- ➤ PRV positive neurons were more likely to be immunoreactive for MC4-R than for OT.
- > Scattered triple labelled PRV/MC4-R/OT neurons were detected in the medial preoptic area and the paraventricular nucleus.

### **Conclusion**

These data strongly suggest that MC4-R, and to a less extent OT, are involved in the efferent control of the clitoris and vagina, and consequently facilitate our understanding of how the melanocortinergic pathways regulates female sexual function.