Intravenous administration of 7-hydroxy-(di-N-propylamino)tetralin (7-OH-DPAT) induces sexual responses in anaesthetised male rats

Magali Peeters1, Pierre Clément1, Jacques Bernabe2, Stéphanie Caisey1, Francois Giuliani1,2

1 Pelvipharm, Gif Sur Yvette, France (2) Raymond Poincare Hospital, Dept. of Neurological Rehabilitation, Garches, France

OBJECTIVE, AIMS OF STUDY

Among all central dopaminergic pathways, three major systems (incerto-hypothalamic, nigrostriatal and mesolimbic systems) play a role in facilitating male sexual behaviour (for review see Hull et al., 2004). More particularly, the incerto-hypothalamic system, which includes the medial preoptic area and the paraventricular nucleus of the hypothalamus, has been described as essential in controlling ejaculation (for review see Giulani and Clement, 2006).

Numerous behavioural studies assessing the ability of systemically administered D₂-like receptor agonists, SND 919 and quinpirole, to modulate male rat copulatory behavior demonstrated the key role played by these receptor subtypes in facilitating seminal emission (Bitran et al., 1989), in reducing ejaculation latency (Ferrari and Giuliani, 1994; Foreman and Hall, 1987; Giuliani and Ferrari, 1996) and in lowering the threshold for ejaculation (Foreman and Hall, 1987).

 Shortly after the identification of the DA receptor subtype D₂, it has been reported that systemic administration of 7-hydroxy-2-(di-N-propylamino)tetralin (7-OH-DPAT), a preferential D₂ receptor agonist, facilitated ejaculation mechanisms without affecting sexual arousal (Ahlenius and Larsson, 1995; Ferrari and Giuliani, 1996).

The aim of this study was:

➢ To characterise the effect of peripheral administration of 7-OH-DPAT, a preferential D₂ receptor agonist, on sexual responses

STUDY DESIGN, MATERIALS & METHODS

Method

Male Wistar rats (n = 25) were anaesthetised with isoflurane and the jugular vein was catheterised to allow i.v. delivery of 7-OH-DPAT (0.1, 1 and 10 mg/kg). Additionally, in 5 rats anaesthetised with urethane, acute spinal transection at the thoracic (T8) level was performed. Sexual responses were recorded over 30 min following i.v. injection of 7-OH-DPAT.

Seminal vesicle pressure (SVP) and bulbospongiosus muscle electromyogram (BS-EMG) activity are measured as physiological markers of, respectively, emission and expulsion phases of ejaculation.

Intracavernosal pressure (ICP) is measured as physiological marker of erection

Data Analysis

Ejaculation and erectile responses, identified by direct observation, associated respectively with SVP rises together with synchronized BS-EMG activity and ICP increases are enumerated during 30 min following 7-OH-DPAT delivery. The proportion of rats ejaculating is then determined.

Rats exhibiting a clastic arterial pressure under 40 mm Hg during baseline period are discarded from the study.

The proportions of rats ejaculating were compared using exact Fisher’s test. Results obtained from the different experimental groups are statistically compared with Kruskal-Wallis test (number of events) or one-way ANOVA (latency). Kruskal-Wallis test and one-way ANOVA are followed by, respectively, Dunn’s multiple comparison test and Student-Newman-Keuls’ test when applicable (p<0.05). Data are expressed as the mean±SEM.

RESULTS

Typical recordings of ICP, SVP and BS muscle EMG obtained in anaesthetised rats after i.v. delivery of 7-OH-DPAT (1mg/kg).

A magnification of the recordings is displayed on the right-hand side.

Effects of 7-OH-DPAT i.v. delivered on proportion of rats ejaculating, mean ejaculation number and ejaculation latency in anaesthetised rats

Effects of 7-OH-DPAT i.v. delivered on latency and number of sexual responses in anaesthetised rats.

Effects of acute spinal transection at the T8 level on 7-OH-DPAT-induced sexual responses in anaesthetised rats.

CONCLUSIONS

Intravenous 7-OH-DPAT, a preferential D₂ receptor agonist, is capable to elicit a complete ejaculatory response in anaesthetised male rat. Acting at a supraspinal level, i.v. 7-OH-DPAT can activate synchronously emission and expulsion phases of ejaculation. Erection being observed after ejaculation-related responses, we may suggest that in 7-OH-DPAT model, erection is reflexive.

Intravenous injection of 7-OH-DPAT is a valuable experimental paradigm of pharmacologically-induced ejaculation.