Is relaxation of human detrusor by sildenafil relying on PDE5 inhibition?

EAU Congress, Stockholm,

March 19, 2009

Introduction

PDE5 inhibitors: first-line therapy in erectile dysfunction (ED).

 ED is often associated with lower urinary tract symptoms (LUTS), independently of age and cardiovascular comorbidies

PDE5 inhibitors for LUTS/BPH: Clinical trials

Patients with LUTS associated with BPH

Mechanism of action?

Objectives

Experimental design

> Human bladder samples

Bladder samples were obtained from 20 patients (65±2.1 years) undergoing cystoprostatectomy for infiltrating bladder cancer with no history of bladder dysfunction according to their medical chart.

➤ Evaluation of the smooth muscle contractile reactivity with isolated organ baths

- Strips are excised from the tissue samples and connected to force transducers for isometric tension recording
- Organ baths are filled with Krebs buffer maintained at 37°C and bubbled with 95%O2 and 5%CO2, pH 7.4

Effect of sildenafil on carbachol-precontracted human detrusor strips

By which mechanism of action does sildenafil relax human bladder tissue?

NO/cGMP-dependent mechanism of action?

Effect of guanylate cyclase inhibition

Effect of a NO donor

Relaxation of carbachol-precontracted human bladder by sildenafil involves a cGMP-independent mechanism pathway; Indeed, a NO donor does not enhance sildenafil effect

cAMP-dependent mechanism of action?

Effect of adenylate cyclase inhibition

➤ Sildenafil inhibits carbachol-induced human bladder contractions via a cAMP-dependent mechanism pathway

Other mechanisms of action?

Effect of guanylate and adenylate cyclases inhibition

➤ Sildenafil also exerts its inhibitory effect by an other pathway, independent of cGMP or cAMP signaling pathways, since some relaxing activity remains in presence of both MDL 123,330A and ODQ

K+ channel-dependent mechanism of action?

Effect of BK_{Ca} channels blocking

Effect of SK_{Ca} channels blocking

Effect of K_{ATP} channels blocking

► K_{ATP}, BK_{Ca}, and SK_{Ca} channels are involved in the relaxation elicited by sildenafil on human detrusor tissue

Conclusions

 The relaxant effect of sildenafil on carbachol-induced human detrusor contraction involves cAMP-dependent signaling pathway and K+ channels dependent mechanism of action

 The contribution of the NO-cGMP signaling pathway in sildenafil-induced relaxation appears to be minor

 Sildenafil in part improves urinary symptoms in men with LUTS associated with BPH via direct relaxation of the detrusor